02/01/2011 - 03/01/2011 - Mechanical engineering
News Update
Loading...

Thursday, February 17, 2011

Welding

Welding

Welding  is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces.

Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding can be done in many different environments, including open air, under water and in outer space. Regardless of location, welding remains dangerous, and precautions are taken to avoid burns, electric shock, eye damage, poisonous fumes, and overexposure to ultraviolet light.

Until the end of the 19th century, the only welding process was forge welding, which blacksmiths had used for centuries to join iron and steel by heating and hammering them. Arc welding and oxyfuel welding were among the first processes to develop late in the century, and resistance welding followed soon after. Welding technology advanced quickly during the early 20th century as World War I and World War II drove the demand for reliable and inexpensive joining methods. Following the wars, several modern welding techniques were developed, including manual methods like shielded metal arc welding, now one of the most popular welding methods, as well as semi-automatic and automatic processes such as gas metal arc welding, submerged arc welding, flux-cored arc welding and electroslag welding. Developments continued with the invention of laser beam welding and electron beam welding in the latter half of the century. Today, the science continues to advance. Robot welding is becoming more commonplace in industrial settings, and researchers continue to develop new welding methods and gain greater understanding of weld quality and properties

Wednesday, February 16, 2011

What is the role of a Production Engineer?

What is the role of a Production Engineer?


Production engineering

 is a combination of manufacturing technology with management science. He should typically has a wide knowledge of engineering practices and is aware of the challenges related to production. The goal is to accomplish the production in the smoothest, most-judicious and most-economical way.

Also encompasses castings, joining processes, metal cutting & tool design, metrology, machine tools, machining systems, automation, jigs and fixtures, and die and mould design. Products engineering overlaps substantially with manufacturing engineering and industrial engineering.

In industry, once the design is realized, production engineering concepts regarding work-study, ergonomics, operation research, manufacturing management, materials, production planning, etc., play important roles in efficient production processes. These deal with integrated design and efficient planning of the entire manufacturing system, which is becoming increasingly complex with the emergence of sophisticated production methods and control systems.

Production Engineer

Work opportunities are available in public and  may be in private sector manufacturing organizations engaged in implementation, development of new production processes, information and control systems, and computer skills controlled inspection, assembly and handling.

What is the role of a Production Engineer?

A Production Engineer devises and implements techniques for improving manufacturing operations. Examines current processes and devises methods to boost productivity or cut expenses. A Production Engineer ensures that established production procedures and quality standards are followed. A bachelor's degree in engineering is required. Production Engineers usually report to a manager or the head of a unit or department. A Production Engineer normally has 10+ years of expertise in the field. Works on advanced, complex technical projects or commercial issues that require cutting-edge technical or industry expertise. Works independently. Goals are usually expressed in terms of "solutions" or "project goals." Because of his or her specialisation, he or she may be able to lead the work group.

Jobs and career in Production Engineering, Salary, and Top Recruiters

Production engineers have a huge job market in worldwide. Individuals with a degree in engineering are employed in a variety of industries, including pharmaceuticals, research labs, manufacturing, communication, travel, sports, health, and information technology, among others.

Following are some of the occupations available to production engineers after completing a course in the field:

  1. Production Engineer
  2. Engineering Plant Production Manager
  3. Process Engineer
  4. product engineer
  5. Industrial Managers
  6. Quality Engineers
  7. process engineer
  8. Management Engineer
  9. Operations Analyst
  10. Manufacturing and design Engineer
  11. Architectural and Engineering Managers
  12. Cost Estimators
  13. Health and Safety Engineers
  14. Industrial Engineering Technicians
  15. Industrial Production Managers
  16. maintenance engineer
  17. Logisticians
  18. Management Analysts

Salary for Production Engineers

A production engineer's remuneration varies depending on their level of experience. It is entirely determined by the years of experience and skill set required for the position. See the estimated average yearly salary for the various levels is E£ 61,042.

Production Engineer Responsibilities:

  1. Supervising manufacturing processes and ensuring that will work is completed in a safe and efficient manner are among the responsibilities of him.
  2. Collaboration with other engineers on initiatives to enhance production, costs, and labour requirements.
  3. Identifying production line issues and giving advice and training.
  4. Creating safety processes and standards that consider the workers' well-being while simultaneously reducing the carbon footprint.
  5. Keeping up with engineering and production advances and exchanging knowledge with coworkers.
  6. Unsafe practises must be identified, documented, and reported.
  7. Creating project production schedules and budgets.
  8. Meetings with appropriate departments and stakeholders are being planned.
  9. Analyzing and recommending improvements to all aspects of productiona.
  10. Obtaining any necessary materials and equipment.

Modern technology tools and software desien products 

  • SolidWorks

 is  an mechanical engineering software  and a computer programme for CAD modelling that was created by Dassault Systèmes.
SolidWorks is an industrial standard for generating physical object designs and make design specifications, with over 165,000 organisations using it as of 2013.

  • AutoCAD

Autodesk's AutoCAD is an example of a CAD modelling computer programme. CAD modelling and CAE are also common uses for AutoCad. 

Product life cycle management (PLM) tools and analysis tools used to run complicated simulations are two other CAE applications often utilised by product manufacturers. Product response to expected loads, including fatigue life and manufacturability, can be predicted using analysis techniques. Finite element analysis (FEA), computational fluid dynamics (CFD), and computer-aided manufacturing are examples of these techniques (CAM). A mechanical design team can iterate the design process fast and cheaply using CAE systems to build a product that better satisfies cost, performance, and other limitations. There's no need to build a real prototype until the design is nearly finished, allowing hundreds or thousands of people to test it.
CAE analysis programmes can also model difficult physical phenomena that are impossible to address by hand, such as viscoelasticity, complex contact between mating components, and non-Newtonian flows.

Multidisciplinary design optimization (MDO) is being utilised with other CAE tools to automate and optimise the iterative design process, just as manufacturing engineering is integrated with other disciplines like mechatronics.
 MDO solutions automate the trial-and-error procedure employed by traditional engineers by wrapping around existing CAE processes. MDO employs a computer-based technique that seeks for superior alternatives iteratively from an initial guess within defined parameters. This process is used by MDO to determine the optimum design outcome and to list numerous possibilities. 

What qualifications are required of a Production Engineer?

When considering a position like this, you must consider your talents and abilities. The capacity to excel in this profession is contingent on the following abilities: Process Engineering, Process Mapping, Process Optimization, and Production Engineering are all examples of mathematical modelling. Although not always required, knowing how to use CAD software, CAE software, and a quality management system might be beneficial (QMS). Attempt to convey your mastery of these talents during an interview.

Industrial engineers design efficient systems that integrate employees, equipment, materials, information, and energy in order to produce a product or provide a service.

Working Conditions

Industrial engineers work in offices or in the environments they are aiming to change, depending on their job. When observing difficulties, they may, for example, see industrial workers assembling parts. They may be in an office at a computer, looking at data that they or others have acquired when solving problems.

What Does It Take to Become an Industrial Engineer?

A bachelor's degree in industrial engineering or a similar discipline, such as mechanical or electrical engineering, or industrial engineering technologies, is often required of industrial engineers.

Pay

In May 2021, the median yearly wage for industrial engineers was $95,300.

Job Prospects

Industrial engineers' employment is expected to expand 14% between 2020 and 2030, faster than the average for all occupations.

On average, throughout the next decade, there will be about 23,300 jobs for industrial engineers. Many of those positions are projected to arise as a result of the need to replace people who change occupations or leave the workforce for other reasons, such as retirement.

Data by State and Region

Find job and wage information for industrial engineers by state and region.

Occupational Groups

Industrial engineers have similar job duties, education, job growth, and salary to other occupations.

Making Your Mark

Manufacturing engineering majors are beneficial in both engineering and business operations. Almost all manufacturing engineering graduates have begun their professions or completed their education within six months of graduation in recent years. Boeing, John Deere, Borgwarner, HNI, Caterpillar, Deublin, and Kohler are among the companies where they work.




Featured

[Featured][recentbylabel]

Featured

[Featured][recentbylabel]
Notification
This is just an example, you can fill it later with your own note.
Done